B.E. Semester: V

Department of Civil Engineering Subject Name: Applied Fluid Mechanics (CV502-N) Course Category: Program Course Core (PCC)

A. Objectives of the Course:

- To take up important concepts of fluid flows to the civil engineers managing and designing systems of various fluid flows.
- To develop a student's skills in analyzing fluid flows through the proper use of modeling and the application of the basic fluid-flow principles

B. Teaching & Evaluation Scheme:

Teaching Scheme				Evaluation Scheme						Total
L	Т	Р	Total	Credit	edit Theory		IE	CIA	Pra/Viva	Marks
hrs	hrs	hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	WIAIKS
3	0	2	5	4	3	70	30	20	30	150

C. Detailed Syllabus:

1. Behaviour of Real Fluids:

Governing Equations of Fluid Dynamics, Navier-Stokes Equation of Motion, Initial and Boundary Conditions,

Steady Viscous Flow: Couette Flow, Hagen-Poiseuille Flow between Parallel Plates and Tubes, Flow Around a Cylinder

Turbulent Flow: Reynolds Equations of Motion for Turbulent Flow – Prandtl's Mixing Length Theory Turbulent Flow in Pipes, Velocity Distribution from Prandtl's Hypothesis, Smooth and Rough Boundaries

Unsteady Flow in Pipes: Oscillation of Liquids-Water Hammer Equations

2. Boundary Layer:

Boundary Layer Concept – Laminar and Turbulent Boundary Layer Growth Over a Flat Plate Von-Karman Momentum Integral Equation- Separation of Boundary Layer, Regimes of External Flow-Wakes and Drag-Drag On Immersed Body-Sphere Cylinder – Bluff Body – Lift And Magnus Effect

3. Open Channel Flow:

Basic Concept of Open Channel Flow – Steady Uniform Flow – Velocity Distribution- Optimum Shape of Cross Section for Uniform Flow- Energy Equation – Specific Energy – Specific Energy Diagram – Discharge Diagram – Application of Specific Energy and Discharge Diagrams

Non – Uniform Steady Flow-Equations for Gradually Varied Flow-Direct Step Method, Rapidly Varied Flow – Hydraulic Jump – Location of Hydraulic Jump – Flow Under Sluices – Water Surface Profiles

4. Turbo Machinery:

Water Turbines: Impulse Turbine-Reaction Turbines – Significance of Specific Speed – Unit Quantities, Concept of Performance Characteristics for Water Turbines Centrifugal Pumps: Pumps in Series and Parallel, Specific Speed, Unit Quantities, and Characteristics Curves, Cavitations in Turbines and Pumps

5. Dimensional Analysis and Similitude:

Dimensional Analysis: Fundamental Dimensions – Physical Quantity and Dimensions – Dimensional Homogeneity – Non Dimensional Parameters, π – Theorem Dimensional analysis, Choice of Variables, Determination of Dimensionless Parameters, Model Similitude – Physical Models – Geometric – Kinematic and Dynamic Similarity, Model Studies

Unit	Title of the Unit	Minimum	Weightage
No		Hours	(%)
1	Behaviour of Real Fluids	12	25
2	Boundary Layer	09	20
3	Open Channel Flow	09	20
4	Turbo Machinery	07	15
5	Dimensional Analysis and Similitude	08	20
	Total:	45	100

D. Lesson Planning:

E. List of Practical/Assignments:

Unit No	Title of the Unit
1	To determine Manning's co efficient of roughness N for the bed of given flume
2	To determine the discharge coefficients of broad crested weir and to measure the water surface profile for flow over broad crested weir
3	To study the measurement of water surface profile for a hydraulic jump
4	To study the flow over a hump placed in an open channel
5	To calibrate the Ogee spillway
6	Experiments on Analogy- Analog Methods: Electrical Analogy-Viscous Analogy
7	Similitude and Model Studies

F. Instructional method and pedagogy (Continuous Internal Assessment Scheme CIA):

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lectures, practical and tutorial which carry 05 marks.
- ➤ At regular intervals assignments is given. In all, a student should submit all assignments of 05 marks each.
- Classroom participation and involvement in solving the problems in tutorial rooms carries 05 marks.
- > Viva voce will be conducted at the end of the semester of 05 marks.
- > One internal exam of 30 marks is conducted as a part of mid semester evaluation.

G. Students Learning Outcomes:

On the successful completion of this course

Concepts of fluid flow that will make the base to learn the subject hydraulics and will also impart a better understanding to the design concepts of various structures holding or dealing with fluids

H. Recommended Study Materials:

a. Text book & Reference Books:

- 1. Jain, A.K., Fluid Mechanics, Khanna Publishers, New Delhi
- 2. Bansal, R.K., Fluid Mechanics, Laxmi Publications
- 3. Streeter, V.L. and Wylie, E.B., Fluid Mechanics, McGraw Hill, 1985, New York
- Subramanya, K., Theory and Applications of Fluid Mechanics, Tata-McGraw Hill Publishing Co., 1993, New Delhi
- 5. Shaughnessy, E.J., Katz, I.M. and Schaffer, J.P., Introduction to Fluid Mechanics, SI edition, 2005, Oxford University Press, New Delhi
- 6. White, F.M. Fluid Mechanics, McGraw Hill, New York
- 7. Kumar, D.S., Fluid Mechanics, S.K.Kataria & Sons
- 8. Rajput, R.K., Fluid Mechanics, S. Chand & Co. publications
- 9. Modi, P.N. and Sheth, Fluid Mechanics & Hydraulic Machines, Standard Book House
- Ramamurtham, S., Hydraulic Fluid Mechanics & Fluid Machines, Dhanpatrai Publishing Co.
- 11. Garde, R.J. and Mirajgaoker, A.C., Engineering Fluid Mechanics, New Chand & Sons

b. Web Materials:

- 1. http://nptel.iitm.ac.in
- 2. http://www.mvsengineering.com