

Kadi Sarva Vishwavidyalaya Faculty of Engineering & Technology

Third Year Bachelor of Engineering (Computer Engineering)

(In Effect From Academic Year 2019-20)

Subject Code: CE503-N	Subject Title: Theory of Computation
Pre-requisite	

Teaching Scheme (Credits and Hours)

	Teaching scheme									
L	т	Р	Total	Total Credit	Theory		Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
03	00	00	03	03	03	70	30	20	-	120

Course Objective:

- The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages.
- Classify machines by their power to recognize languages.
- Employ Finite state machines to solve problems in computing.
- To understand deterministic and non-deterministic machines.
- To identify proper machine to implement any problem.
- To understand Chomsky Hierarchies

Outline of the Course:

Sr. No	Title of the Unit	
1	Introduction	6
2	Regular Languages	3
3	Finite Automata	12
4	Context-Free Languages	8
5	Pushdown Automata	9
6	Pumping Lemma	2
7	Context-Sensitive Languages	2
8	Turing Machines	6

Total hours (Theory): 48 Total hours (Lab): NA Total hours: 48

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Third Year Bachelor of Engineering (Computer Engineering)

(In Effect From Academic Year 2019-20)

Detailed Syllabus

Sr. No	Торіс	Lecture Hours	Weight age (%)
1	Introduction: Set Theory, Logic, PMI, Proof methods, Strings, Alphabet, Languages, Production, derivation and Chomsky hierarchy of Languages.	6	10
2	Regular Languages: Regular Languages and Regular Expressions, Memory Required to Recognize A Language, Distinguishable and Indistinguishable Strings.	3	15
3	Finite Automata: Deterministic finite automata (DFA), Finding Regular Expression of a FA, Constructing Finite Automata for a given regular expressions, Union, Intersection, Difference and Complements of a FA, Nondeterministic finite automata (NFA), NFA- ^A , Theorem and example of NFA- ^A to NFA and NFA to DFA conversion, Kleene's Theorem Part 1 and Part 2, Minimization of DFA, Decision Problems.	12	20
4	Context Free Languages: Context Free Grammar and Context Free Languages with example, Derivation Tree and Ambiguity, Unambiguous CFG, An unambiguous CFG for Algebraic Expressions, Simplified forms and Normal Forms.	8	15
5	Pushdown Automata: Definition of PDA, Deterministic PDA and Non Deterministic PDA, PDA for given CFG and CFG for given PDA, Intersections and Complements of CFG.	9	15
6	Pumping Lemma: Non Regular Languages and Non Context Free Languages, Pumping Lemma for RL and CFG.	2	05
7	Context Sensitive Languages: Definition of Context Sensitive languages, Linear Bounded Automata.	2	05
8	Turing Machines: Definition and Examples of TM, Variation of Turing Machines, Combining TM, Nondeterministic Turing Machines, Universal Turing Machines, Church Turing Thesis, Recursive Enumerable and Recursive Languages.	6	15
	Total	48	100

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Third Year Bachelor of Engineering (Computer Engineering)

(In Effect From Academic Year 2019-20)

• The course needs more focus on numerical examples based on exercises at the end of each chapter to aware of algorithm and theorem more precisely.

Learning Outcome:

On successful completion of this course, the student should be able to:

- Graduate should be able to understand the concept of abstract machines and their power to recognize the languages.
- Attains the knowledge of language classes & grammars relationship among them with the help of Chomsky hierarchy.
- Graduate will be able to understanding the pre-requisites to the course compiler or advanced compiler design.
- Able to employ finite state machines for modeling and solving computing problems.
- Able to design context free grammars for formal languages.
- Able to understand the concepts of Turing machine.
- Able to gain proficiency with mathematical tools and formal methods.

e-Resources:

- <u>https://nptel.ac.in/courses/106106049/</u>
- <u>https://nptel.ac.in/courses/106103070/</u>
- https://nptel.ac.in/courses/111103016/
- https://nptel.ac.in/courses/106104148/

Reference Books:

- 1. John Martin, Introduction to Languages and The Theory of Computation, Tata McGraw Hill.
- 2. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson Education Asia.
- 3. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, Pearson Education Asia.
- 4. Dexter C. Kozen, Automata and Computability, Undergraduate Texts in Computer Science, Springer.
- 5. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.
- 6. Mishra and Chandrashekaran, Theory of Computer Science Automata languages and computation, PHI.
- 7. Daniel I.A. Cohen, Introduction to Computer Theory, John Wiley.
- 8. P. K. Srimani, Nasir S. F. B, A Text book on Automata Theory, Cambridge University Press.
- 9. Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan Rama R.
- 10. Theory of Computation: A Problem Solving Approach, Kavi Mahesh, Wiley India Pvt. Ltd.