

Kadi Sarva Vishwavidyalaya Faculty of Engineering & Technology Third Year Bachelor of Engineering (Computer Engineering)

(In Effect From Academic Year 2019-20)

Subject Code: CE506E-N	Subject Title: Computer Graphics
Pre-requisite	

Teaching Scheme (Credits and Hours)

Teaching scheme				Evaluation Scheme						
L	т	Ρ	Total	Total Credit	Theory		Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
03	00	02	05	04	03	70	30	20	30	150

Course Objective:

- This course prepares students for activities involving the design, development, and testing of modeling, rendering, and animation solutions to a broad variety of problems found in entertainment, sciences, and engineering.
- To study and develop interactive programs that uses effectively the graphics functionalities available in contemporary personal computers.
- To study the fundamental principles and technologies upon which these functionalities, and possibly their future evolutions are applicable.
- The skills for designing and implementing practical graphic solutions to challenging problems in different application domains

Outline of the Course:

Sr. No	Title of the Unit	Minimum Hours
1	Introductory concepts	06
2	Graphics Output Primitives	10
3	2D Viewing	08
4	3D Viewing and Projections	07
5	2D-3D Transformations	09
6	Advanced Topics	08

Total hours (Theory):48 Total hours(Lab):32 Total hours:80

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Third Year Bachelor of Engineering (Computer Engineering)

(In Effect From Academic Year 2019-20)

DetailedSyllabus

Sr. No	Topic Detail	Lecture Hours	Weight age(%)
1	Introductory Concepts: Introduction of Computer Graphics, Applications of Computer Graphics, Coordinate representation and Pixel Graphics, Raster Scan & Random Scan systems, video controller and raster scan display processor, Color monitors, Graphics software.	06	10
2	Graphics Output Primitives: Point, and Lines, Line Drawing Algorithms- simple, DDA, Bresenham's Line Drawing algorithm, Circle and Ellipse drawing algorithm, Polygon drawing: Representation of polygon; Conventional methods for drawing polygons; Real time Scan Conversion and Run length encoding; Filled area primitives, character generation, Antialiasing	10	20
3	2D Viewing: Viewing pipeline, Window-to-viewport transformation, 2-D Clipping, Chen- Sutherland Line Clipping, Mid-point subdivision algorithm, Liang-Barsky clipping, Cyrus-Beck line clipping; Polygon Clipping: Sutherland-Hodgeman and Weiler-Atherton polygon clipping; Character Clipping	08	20
4	3D Viewing and Projections: Viewing pipeline, 3-D concepts and representation, viewing coordinates, Projections: Perspective, Orthographic, Axonometric, Oblique projections, Curves and surfaces: Spline representations, Bezier curves and surfaces, B- spline curves and surfaces.	07	15
5	2D-3D Transformations: Scaling, Rotation, Translation, Shearing, Reflection; Homogeneous coordinates, Composite Transformations, Affine transformation, Solid Body transformations.	09	20
6	Illumination and Colour Models: Visible surface detection methods: Techniques for efficient Visible-Surface Algorithms, Categories of algorithms, Back face removal, The z-Buffer Algorithm, Scan-line method, Painter's algorithms (depth sorting), Area sub- division method, BSP trees, Visible-Surface Ray Tracing, comparison of the methods. Illumination models and surface rendering: Illumination and Shading Models for Polygons, Reflectance properties of surfaces, Ambient, Specular and Diffuse reflections, Atmospheric attenuation, Phong's model, Gouraud shading, some examples	08	15
	Total	48	100

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Third Year Bachelor of Engineering (Computer Engineering)

(In Effect From Academic Year 2019-20)

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Learning Outcome:

- 1. Know and be able to discuss hardware system architecture for computer graphics. This includes, but is not limited to: graphics pipeline, frame buffers, and graphic accelerators/co-processors.
- 2. Know and be able to design and implement model and viewing transformations, the graphics pipeline and an interactive render loop with a 3D graphics API.
- 3. Know and be able to use the underlying algorithms, mathematical concepts, supporting computer graphics. These include but are not limited to:
 - Composite 3D homogeneous matrices for translation, rotation, and scaling transformations.
 - Plane, surface normal, cross and dot products.
 - Hidden surface detection / removal.
 - Scene graphs, display lists.
- 4. Know and be able to select and use among models for lighting/shading
- 5. Know and be able to use and select among current models for surfaces (e.g., geometric; polygonal; hierarchical; mesh; curves, splines).
- 6. Be able to discuss the application of computer graphics concepts in the development of computer games, information visualization, and business applications.
- 7. Be able to discuss future trends in computer graphics and quickly learn future computer graphics concepts and APIs.

E-Resources:

- https://nptel.ac.in/courses/106106090/
- <u>https://nptel.ac.in/courses/106102065/</u>

Reference Books:

- 1. Computer Graphics C Version, D. Hearn And P. Baker, Pearson Education
- 2. Computer Graphics, Foley and van Dam, Person Education
- 3. Computer Graphics with OpenGL, Hearn and Baker, Pearson
- 4. Computer Graphics, A. P. Godse, Technical Publication

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Third Year Bachelor of Engineering (Computer Engineering) (In Effect From Academic Year 2019-20)

List of experiments

No	NameofExperiment
1	To Study and hands on practice of various C Graphics Function
2	Implementation and Using mouse in DOS
3	Implement DDA line algorithm
4	Implement Bresenham's Line algorithm
5	Implement Midpoint Line algorithm
6	Implement Bresenham's Circle Algorithm
7	Implement Mid-point Ellipse algorithm
8	Implement Polygon Filling using Scan Fill, Flood Fill and Boundary Fill Algorithm
9	Implement algorithm of 2D Transformation of an Object
10	Implement Line Clipping using Cohen- Sutherland Algorithm
11	Implement Line Clipping using Liang-Barky algorithm
12	Implement Polygon Clipping using Sutherland-Hodgeman Algorithm