

# Kadi Sarva Vishwavidyalaya Faculty of Engineering & Technology Third Year Bachelor of Engineering (Computer Engineering)

(In Effect From Academic Year 2019-20)

| Subject Code: CE605D-N | Subject Title: Internet of Things |
|------------------------|-----------------------------------|
| Pre-requisite          |                                   |

## **Teaching Scheme (Credits and Hours)**

|     | Teachin | g scheme | 9     |                 | Evaluation Scheme |       |                 |       |        |       |
|-----|---------|----------|-------|-----------------|-------------------|-------|-----------------|-------|--------|-------|
| L   | т       | Р        | Total | Total<br>Credit | Theory            |       | Mid Sem<br>Exam | CIA   | Pract. | Total |
| Hrs | Hrs     | Hrs      | Hrs   |                 | Hrs               | Marks | Marks           | Marks | Marks  | Marks |
| 3   | 0       | 2        | 5     | 4               | 3                 | 70    | 30              | 20    | 30     | 150   |

## **Course Objective:**

- The aim of this course is to make students aware about 'Internet of Things'-IOT, which is an emerging technology through which all the manual process is to be converted in to system operated process and also integrates with the business.
- Students will understand the concepts of Internet of Things and can able to build IoT applications.

#### **Outline of the Course:**

| Sr.<br>No | Title of the Unit                             | Minimum<br>Hour |
|-----------|-----------------------------------------------|-----------------|
| 1         | Introduction to IoT                           | 5               |
| 2         | IoT & M2M                                     | 8               |
| 3         | Network & Communication aspects.              | 10              |
| 4         | Web Infrastructure for Managing IoT Resources | 4               |
| 4         | Challenges in IoT.                            | 6               |
| 5         | Domain specific applications of IoT           | 5               |
| 6         | Developing IoTs                               | 6               |
| 7         | lot Tools                                     | 4               |

Total hours (Theory): 48 Total hours (Practical) :32 Total hours: 80



Faculty of Engineering & Technology

Third Year Bachelor of Engineering (Computer Engineering)

(In Effect From Academic Year 2019-20)

# **Detailed Syllabus**

| Sr.<br>No | Торіс                                                   | Lecture<br>Hours | Weight<br>age(%) |
|-----------|---------------------------------------------------------|------------------|------------------|
|           | Introduction to IoT                                     |                  |                  |
| 1         | Defining IoT.                                           |                  |                  |
|           | Characteristics of IoT.                                 |                  |                  |
|           | Physical design of IoT, Logical                         | 5                | 10               |
|           | • design of IoT,                                        |                  |                  |
|           | Functional blocks of IoT,                               |                  |                  |
|           | Communication models & APIs                             |                  |                  |
| 2         | M2M to IoT –                                            |                  |                  |
|           | A Basic Perspective– Introduction,                      |                  |                  |
|           | Some Definitions,                                       |                  |                  |
|           | M2M Value Chains,                                       |                  |                  |
|           | IoT Value Chains,                                       |                  | . –              |
|           | An emerging industrial structure for IoT.               | 8                | 17               |
|           | An Architectural Overview– Building architecture,       |                  |                  |
|           | Main design principles and needed capabilities.         |                  |                  |
|           | M2M Machine to Machine, Difference between IoT and M2M, |                  |                  |
|           | Software defined Network.                               |                  |                  |
| 3         | Networks & Communication aspects                        |                  |                  |
|           | Wireless medium access issues,                          |                  |                  |
|           | MAC protocol survey,                                    |                  |                  |
|           | Survey routing protocols,                               |                  |                  |
|           | Sensor deployment & Node discovery,                     | 10               | 21               |
|           | Data aggregation & dissemination,                       |                  |                  |
|           | Multicast and unicast.                                  |                  |                  |
|           | RTS and CTS in details.                                 |                  |                  |
| 4         | Web Infrastructure for Managing IoT Resources           |                  |                  |
|           | OpenIoT Architecture for IoT/Cloud Convergence.         |                  |                  |
|           | Scheduling Introduction.                                |                  |                  |
|           | Process and IoT Service Lifecycle.                      | 4                | 8                |
|           | <ul> <li>Scheduling and Resource Management.</li> </ul> | 4                | 0                |
|           | Device/Cloud Collaboration Framework.                   |                  |                  |
|           | Applications of Device/Cloud Collaboration.             |                  |                  |
| 5         | Challenges in IoT                                       |                  |                  |
| -         | <ul> <li>Design challenges,</li> </ul>                  |                  |                  |
|           | <ul> <li>Development challenges,</li> </ul>             |                  | 40               |
|           | <ul> <li>Security challenges,</li> </ul>                | 6                | 13               |
|           | <ul> <li>Other challenges</li> </ul>                    |                  |                  |
|           |                                                         |                  |                  |



# Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Third Year Bachelor of Engineering (Computer Engineering)

(In Effect From Academic Year 2019-20)

| 6 | Domain specific applications of IoT                                    |    |     |
|---|------------------------------------------------------------------------|----|-----|
|   | Home automation,                                                       |    |     |
|   | <ul> <li>Industry applications,</li> </ul>                             | 5  | 10  |
|   | Surveillance applications,                                             |    |     |
|   | Other IoT applications.                                                |    |     |
| 7 | Developing IoTs                                                        |    |     |
|   | Introduction to Python,                                                |    |     |
|   | <ul> <li>Introduction to different IoT tools,</li> </ul>               |    | 10  |
|   | <ul> <li>Developing applications through IoT tools,</li> </ul>         | 6  | 13  |
|   | Developing sensor based application through embedded system            |    |     |
|   | platform, Implementing IoT concepts with python.                       |    |     |
| 8 | IoT Tools.                                                             |    |     |
|   | Introduction to Arduino Programming.                                   |    |     |
|   | <ul> <li>Integration of Sensors and Actuators with Arduino.</li> </ul> | 4  | 8   |
|   | Implementation of IoT with Raspberry Pi.                               |    |     |
|   | Total                                                                  | 48 | 100 |

### Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

#### **STUDENTS LEARNING OUTCOMES:**

- On successful completion of the course, the student will:
- Understand the concepts of Internet of Things
- Analyze basic protocols in wireless sensor network
- Design IoT applications in different domain and be able to analyze their performance
- Implement basic IoT applications on embedded platform

## List of Tutorials:

- Study of IoT based on amazon.
- IoT application supported by cloud environment.
- different application used to build IoT..
- IoT design implementation and challenges.



# Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Third Year Bachelor of Engineering (Computer Engineering)

(In Effect From Academic Year 2019-20)

# **E-Resources:**

- 1. https://internet-of-things-innovation.com/insights/
- 2. https://opensource.com/resources/internet-of-things

## **Reference Books:**

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks:
- 3. Internet of Things Principles and Paradigms, Edited By Rajkumar Buyya, Amir Vahid Dastjerdi, Morgan Kaufmann, ELSEVIER
- 4. Fundamentals of Wireless Sensors Networks Theory and Practice, Waltenegus Dargie and Christian Poellabauer, WILEY Series
- 5. Rethinking the Internet of Things A Scalable approach to connecting everything, Francis daCosta, Apress Open
- 6. Arduino Cookbook, Michael Margolis, O'REILLY
- 7. Internet of Things From Research and Innovation to Market Deployment, Edited By Ovidiu Vermesan and Peter Friess, River Publishers

| No | Name of Experiment                                                        |
|----|---------------------------------------------------------------------------|
| 1  | Introduction to Arduino Board, Arduino IDE and Cables                     |
| 2  | Perform Practical to blink LED on Arduino Board and external LED as well. |
| 3  | Design an IOT application to use the concept of RFID Sensor.              |
| 4  | Design and implement the concept of Flex Sensor.                          |
| 5  | Implement the concept of IR Sensor.                                       |
| 6  | Implement the concept of Piezo Vibration Sensor.                          |
| 7  | Implement the concept of Accelerometer.                                   |
| 8  | Implement the concept of Temperature and Humidity Sensor.                 |
| 9  | Implement the concept of flame Sensor.                                    |
| 10 | Implement the concept of buzzer Sensor.                                   |

# List of experiments