

Kadi Sarva Vishwavidyalaya Faculty of Engineering & Technology Second Year Bachelor of EC Engineering

## Subject Code: EC306-NSubject Title: ELECTRICAL MACHINES

#### **Course Objective:**

- To present a problem oriented introductory knowledge of Electrical Machines.
- To focus on the study of electro mechanical energy conversion & different parts of electrical machine.
- To address the underlying concepts & methods behind Electrical Engineering machines.
- To identify & formulate solutions to problems relevant to Electrical Machines and find the efficiency of machine.

# **Teaching Scheme (Credits and Hours)**

| Teaching scheme |     |     |       | Total  | Evaluation Scheme |       |       |       |        |       |
|-----------------|-----|-----|-------|--------|-------------------|-------|-------|-------|--------|-------|
| L               | Т   | Р   | Total | Credit | Theory            |       | IE    | CIA   | Pract. | Total |
| Hrs             | Hrs | Hrs | Hrs   |        | Hrs               | Marks | Marks | Marks | Marks  | Marks |
| 02              | 00  | 02  | 04    | 03     | 03                | 70    | 30    | 20    | 30     | 150   |

# **Outline of the Course:**

| Sr.<br>No | Title of the Unit                | Minimum<br>Hours |  |
|-----------|----------------------------------|------------------|--|
| 1         | DC generators:                   | 6                |  |
| 2         | DC Motors                        | 6                |  |
| 3         | <b>3-Phase induction motor</b> 8 |                  |  |
| 4         | Transformer                      | 8                |  |
| 5         | Special Machines                 | 4                |  |

Total hours (Theory): 32 Total hours (Practical): 32

Total hours: 64



Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology Second Year Bachelor of EC Engineering

# **Detailed Syllabus:**

| Sr.<br>N | Торіс                                                                                                                                                                                                                                                                                                                                                             | Lecture<br>Hours | Weight<br>age(%) |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 1        | <b>DC generators</b><br>Working principle, Construction, Types, Open circuit characteristic, External<br>and Internal characteristic, Losses & Efficiency                                                                                                                                                                                                         | 6                | 20               |
| 2        | <b>DC Motors</b><br>Principle of operation, Types, Torque equation, Speed-Torque characteristics of shunt, series and compound motor, Need of Starter and Types, Methods of speed control, Losses and Efficiency.                                                                                                                                                 | 6                | 20               |
| 3        | <b>3-Phase induction motor</b><br>Construction, , Principle of operation, Production of Rotating magnetic field<br>,Speed and Slip, Rotor current , Power Flow diagram, Relations between rotor<br>input, copper losses and Output, Torque Equation, Torque-Slip Characteristics,<br>Losses and Efficiency, Need of Starters and Types, Methods of Speed control. |                  | 25               |
| 4        | <b>Transformers</b><br>Construction of Three phase and single phase transformers, Working principle<br>Types of transformers based on construction EMF equation, no load and on load<br>vector diagram, SC and OC test, and Basic Introduction of Three phase<br>Tranformer, Auto transformer.                                                                    |                  | 25               |
| 5.       | <b>Special Machines</b><br>Stepper motor: General construction, working and applications, Synchronous<br>Motor, Universal Motors, AC & DC Servo motors.                                                                                                                                                                                                           | 4                | 10               |
|          | Total                                                                                                                                                                                                                                                                                                                                                             | 32               | 100              |



# Kadi Sarva Vishwavidyalaya Faculty of Engineering & Technology Second Year Bachelor of EC Engineering

### Instructional Method and Pedagogy (Continuous Internal Assessment (CIA) Scheme)

- At the start of course, the course delivery pattern , prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal weightage should be given to all topics while teaching and conduction of all examinations.
- Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- One/Two internal exams may be conducted and total/average/best of the same may be converted to equivalent of 30 marks as a part of internal theory evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of ten marks in the overall internal evaluation.
- Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.

#### **Learning Outcomes:**

At the end of this course, the student would be able

• The student can be acquired the basic knowledge of energy conversion principle and electrical machine thus being Prepared to pursue any area of engineering spectrum in depth as desired.

• The students will be able to effectively employ electrical systems and lead the exploration of new applications and Techniques for their use.

### **TEXT BOOKS & REFERENCE BOOKS :**

- 1. Electrical Machines. by Nagarath & Kothari, MHE Publications
- 2. Electrical Technology Vol II. B. L. Theraja, S. Chand Publications
- 3. Performance and Design of A.C. machines by M. G. Say
- 4. Electrical Machines by P S Bhimbra
- 5. Electrical Machines by J. B. Gupta, Kataria Pub.



Kadi Sarva Vishwavidyalaya Faculty of Engineering & Technology Second Year Bachelor of EC Engineering

## LIST OF EXPERIMENTS

| Sr.<br>No. | Name of experiment                                                                                             |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1          | Constructional study of D.C. Machine Parts                                                                     |  |  |  |  |
| 2          | To obtain the magnetization characteristic of a separately excited D.C Generator                               |  |  |  |  |
| 3          | To Obtain Internal and External characteristic of D.C Shunt Generator.                                         |  |  |  |  |
| 4          | To obtain Internal and External characteristics<br>of a D.C. Series generator.                                 |  |  |  |  |
| 5          | To obtain External and Internal characteristics of a D.C. compound generator                                   |  |  |  |  |
| 6          | Study construction and working principle of the d.c. motor Starter.                                            |  |  |  |  |
| 7          | To perform the speed control of D.C shunt Motor by<br>(i) Field Control Method<br>(ii) Armature Control Method |  |  |  |  |
| 8          | Constructional study of 1-Phase Transformer.                                                                   |  |  |  |  |
| 9          | Constructional study of 3-Phase Induction Motor.                                                               |  |  |  |  |
| 10         | To perform load Test on a $3-\Phi$ Induction Motor & Obtain the performance characteristics.                   |  |  |  |  |