

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Electronics and communication Engineering (Academic Year 2019-20)

Subject Code: EC606C-N	Subject Title: CMOS ANALOG CIRCUIT DESIGN
Pre-requisite	

Course Objective:

The educational objectives of this course are

- To present an introductory knowledge of analog IC design.
- To address the underlying concepts of different analog IC Design.

Teaching Scheme (Credits and Hours)

	Teac	hing scl	neme		Evaluation Scheme							
L	Т	Р	Total	Total Credit	Theory		Theory		IE Marks	CIA Marks	Pract. Marks	Total Marks
Hrs	Hrs	Hrs	Hrs		Hrs	Marks			1,202,220			
03	00	02	05	04	03	70	30	20	30	150		

Outline Of the Course:

Sr. No	Title of the Unit	Minimum Hours
1.	Amplifiers	09
2.	Differential & Operational amplifiers	10
3.	Digital phase locked loop	05
4.	Current sources and sinks & References	05
5.	Memory circuits	05
6.	Non linear analog &Dynamic circuits	05
7.	Data Converters(ADC & DAC architecture)	09
		48

Total hours (Theory): 48 Total hours (Lab): 16*2=32 Total hours: 80

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Electronics and communication Engineering (Academic Year 2019-20)

Detailed Syllabus

Unit No.	Topics	Lecture Hours	Weight age(%)
1.	Amplifiers: Gate-Drain connected loads: Common source and common gate amplifiers, the source follower, Current source load: The cascode connection and the Push pull amplifier, Noise and Distortion in Amplifiers: Modeling Amplifier noise, Class AB amplifier, feedback amplifier	09	20
2.	Differential & Operational amplifiers: The Source coupled pair: Current source load, CMRR, noise, matching, Source cross coupled pair: current source load, Cascode loads, Basic CMOS Opamp design	10	20
3.	Digital phase locked loop: The phase detector, Voltage controlled oscillator ,Loop filter	05	10
4.	Current sources and sinks &References: The current mirror: Cascode connection, transient response, matching in MOSFET mirrors, Wilson current mirror	05	10
5.	Memory circuits: RAM memory cell, DRAM and SRAM cells, Sense amplifier, Row/ column decoder	05	10
6.	Non linear analog &Dynamic circuits: Basic CMOS comparator design, Adaptive biasing, Analog multipliers, Level shifting	05	10
7.	Data Converters (ADC & DAC architecture): Digital Input code resistor string,R-2R ladder network current steering, Charge scaling and pipeline DAC, Two step flash ADC, pipeline ADC, Integrating ADC, Successive Approximation ADC	09	20
	Total	48	100

Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lecture and laboratory which carries 10 marks in overall evaluation.
- One internal exam will be conducted as a part of internal theory evaluation.
- Assignments based on the course content will be given to the students for each unit and will be evaluated at regular interval evaluation.
- Surprise tests/Quizzes/Seminar/tutorial will be conducted having a share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Electronics and communication Engineering (Academic Year 2019-20)

Learning Outcomes:

On successful completion of the course

- Students can understand designing of analog IC. They are aware of different analog ICs which are used in many Industrial applications.

TEXT BOOKS:

- 1. CMOS Analog circuit Design, second edition ,Philip E.Allen,Douglas R.Holberg,Oxford Press
- 2. R. J. Baker, H. W. Li and D. E. Boyce, "CMOS: Circuit Design, Layout and Simulation", IEEE Press, 1998. (Cheap Edition).

REFERENCE BOOKS:

1. B. Razavi, "Design of Analog CMOS Integrated Circuits", McGraw-Hill, 2001. (Cheap Edition).

List of Experiments (Not limited to following. Subject teacher may modify the same):

Sr. No.	Experiment Title
1.	Evaluate I/V characteristic of MOS transistor using spice.
2.	Evaluate on resistance of MOS switch using spice.
3.	Design and Compare the specifications of various topologies of Single stage Amplifiers using
	1micron Technology model parameters.
4.	Design and compare the performance of CMOS Current Mirrors using 1micron Technology
	model parameters.
5.	Design and evaluate the performance of a Simple CMOS Differential amplifiers using 1micron
	Technology model parameters.
6.	Design and compare the performance of different Voltage references using 1micron Technology
	model parameters.
7.	Design and verify the specifications of CMOS operational Amplifier using 1micron Technology.
8.	Design and simulate CMOS two stage op-amp using 1micron Technology model parameters.
9.	Design and simulate CMOS Comparator using 1 micron Technology model parameters.
10.	Design and simulate CMOS Current conveyor using 1micron Technology model parameters.
11.	Design and simulate Low voltage operational amplifier using 1micron Technology model
	parameters.