B.E Semester: 6 Automobile Engineering Subject Name: Dynamics of Machinery (MA601-N)

A. Course Objective:

- To understand the force-motion relationship in components subjected to external forces and analysis of standard mechanisms representing various physic.
- To understand the effect of Dynamics of undesirable vibrations.
- To understand the principles in mechanisms used for speed control and stability control.

B. Teaching / Examination Scheme:

Teaching Scheme				Evaluation Scheme						
L	Т	Р	Total	Total Credit	The	eory	Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
4	0	2	6	5	3	70	30	20	30	150

C. Detailed Syllabus:

Unit No.	Details
1	Introduction to Mechanical Vibrations Elements of simple harmonic motion, concept of natural frequency, types of vibrations, Basic
	elements and lumping parameters of a vibratory system, lumping of physical systems, Concept of Degrees of Freedom (DOF).
	Single Degrees of Freedom System (Linear and Torsional)
	Undamped free vibrations, equivalent stiffness, equivalent systems, determination of natural
	frequency; Coulomb and Viscous damping, Types of dampers, Damping coefficient, damping
2	effects: under, over and critically damped system, Damping factor, damped natural frequency
2	and logarithmic decay; Analytical solution of Forced vibrations with harmonic excitation system
	and vector representation, Dependence of Magnification Factor, Phase difference and
	Transmissibility on frequency of 10 20% excitation for various damping factors, Concept of
	vibration isolation, effect of base excitation.
	Two Degrees of Freedom System
	Equation of motion and principal mode of vibration, torsional vibrations of two and three rotor
	system, torsionally equivalent shaft, geared system.
	Multi degree freedom systems and analysis (Free vibrations):
3	Concepts of normal mode vibrations, natural frequencies, mode shapes, nodes, Correct definition
	of natural frequency
	vibrations of Continuous Systems (Free vibrations):
	Longitudinal vibrations of bar or rod: Equation of motion and solution, Lateral vibrations of
	Detating unhalance.
	Whirling of shefts. Critical speed and its practical importance in the design of shefts. Application
	of Dunkerley's method and Rayleigh's method for estimating the critical speed of shafts.

	Vibration Measurement
4	Introduction to vibration measurement and analysis devices: Vibrometer, velocity pickup,
	accelerometer, FFT analyser
5	Balancing of Rotating Masses
	Concept of static and dynamic balancing, Analysis of effect of unbalanced masses in single and
	multiple planes in rotating elements, Bearing reactions. Approaches and equipment for
	measurement of unbalanced masses
	Dynamics of Reciprocating Mass
	Single Cylinder Engine's Crank: Slider – Crank kinematics (Analytical), Gas force and torque;
	static and dynamic equivalence of models (for masses); Inertia, shaking force and shaking torque,
6	Analysis of pin forces, balancing.
0	Multi Cylinder Engine's Crank: Configurations; Inline Engines: Effect of phase angles, firing
	order and number of strokes; Shaking forces and moments, inertia torques and determination best
	configuration / unbalanced mass. Analysis of V and radial engine configurations. Graphical
	methods may be demonstrated but emphasis should be on analytical approach.
	Cam Dynamics
7	Dynamic analysis of force-closed cam follower: Undamped and Damped response, Jump
	phenomenon: concept, effect of spring force and dead weights.

Total hours (Theory):64	
Total hours (Practical):32	
Total hours:96	

D. Lesson Planning:

Sr. No.	Date/Week	Unit	Weight age	Topic No
1	1^{st} , 2^{nd} , 3^{rd}	Unit 1	20%	1
2	$4^{\text{th}}.5^{\text{th}},6^{\text{th}}$	Unit 2	20%	2
3	$7^{\rm th}$, $8^{\rm th}$, $9^{\rm th}$	Unit 3	20%	3,4
4	$10^{\text{th}} . 11^{\text{th}} . 12^{\text{th}}$	Unit 4	20%	5,6
5	13 th , 14 th ,15 th ,16 th	Unit 5	20%	7

E. Instructional Method & Pedagogy

1	At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
1	Lecture may be conducted with the aid of multi-media projector, black board OHP atc. & equal
2	Weight and should be given to all taning subling and some desting of all examinations
2	weight age should be given to all topics while teaching and conduction of all examinations.
	Attendance is compulsory in lectures and laboratory, which may carries five marks in overall
3	evaluation.
	One/Two internal exams may be conducted and total/average/best of the same may be converted
4	toequivalent of 30 marks as a part of internal theory evaluation.
	Assignment based on course content will be given to the student for each unit/topic and will be
	evaluated at regular interval. It may carry an importance of ten marks in the overall internal
5	evaluation.
	Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the
6	overallinternal evaluation.
	The course includes a laboratory, where students have an opportunity to build an appreciation for
7	theconcept being taught in lectures. Suggested list of experiment is given below

F. List of Practical:

2

1	(a) Experimental study of 1 DOF vibrations oscillatory vibrations with rigid link(negligible		
	mass)		
	(b) Experimental study of 1 DOF vibrations oscillatory vibrations with flexible links (string).		
2	Experimental investigation of 1DOF vibration in spring mass system.		
3	Experimental study of 1 DOF vibrations oscillatory vibrations with rigid inertial link.		
4	Study of Tortional vibration in single plate and miulti plate inertial system.		
5	Static and Dynamic balancing of rotational system.		
6	Soft computing for vibration behaviour observation. Using Sci-Lab.		
7	Individual case studies for math model development and analysis by numerical method using Sci		
	Lab / Python.		
G. Students Learning Outcomes:			
1	The student can identify different areas of dynamic applications dealing with vibration.		

H. Text Books & Reference Books:

1	S S Rao, Mechanical Vibrations, Pearson.
2	R L Norton, Kinematics and Dynamics of Machinery, McGraw-Hill.
3	J.Uicker, Gordon R Penstock & J.E. Shigley, Theory of Machines and Mechanisms, Oxford.
4	Kenneth J Waldron, Gary L Kinzel, Kinematics, Dynamics and Design of Machinery, Wiley.
5	R L Norton, Design of Machinery, McGraw-Hill.

Can find the applications of all the areas in day to day life.