B.E Semester: 5 Mechanical Engineering Subject Name: Advance Fluid Dynamics (ME505-N-D) [Dept. Elect.-1]

A. Course Objective:

• To present a problem oriented in depth knowledge of Advance Fluid Dynamics.

• To address the underlying concepts and methods behind Advance Fluid Dynamics.

B. Teaching / Examination Scheme:

Teaching Scheme					Eval	uation Scl	heme			
L	Т	Р	Total	Total Credit	The	eory	Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
3	0	2	5	4	3	70	30	20	30	150

C. Detailed Syllabus:

Unit No.	Details
1	Basic Concepts and Fundamentals: Definition and properties of Fluids, Fluid as continuum, Langragian and Eulerian description, Velocity and stress field, Fluid statics, Fluid Kinematics.
2	Governing Equations of Fluid Motion: Reynolds transport theorem, Integral and differential forms of governing equations: mass, momentum and energy conservation equations, NavierStokes equations,Euler's equation,Bernoulli's Equation.
3	Exact solutions of Navier-Stokes Equations: Couette flows, Poiseuille flows, Fully developed flows in noncircular cross-sections, Unsteady flows, Creeping flows.
4	Potential Flows: Revisit of fluid kinematics,Stream and Velocity potential function, Circulation, Irrotational vortex,Basic plane potential flows: Uniform stream;Source and Sink;Vortex flow, Doublet,Superposition of basic plane potential flows, Flow past a circular cylinder, Magnus effect;Kutta-Joukowski lift theorem; Concept of lift and drag.
5	Laminar Boundary Layers: Boundary layer equations, Boundary layer thickness, Boundary layer on a flat plate, similarity solutions, Integral form of boundary layer equations, Approximate Methods, Flow separation,Entry flow into a duct.
6	Elements of Stability Theory: Concept of small-disturbance stability, Orr-Sommerfeld equation, Inviscid stability theory,Boundary layer stability, Thermal instability, Transition to turbulence.
7	Turbulent Flow: Introduction, Fluctuations and timeaveraging, General equations of turbulent flow, Turbulent boundary layer equation, Flat plate turbulent boundary layer, Turbulent pipe flow, Prandtl mixing hypothesis, Turbulence modeling, Free turbulent flows.

	Compressible Flows:
8	Speed of sound and Mach number, Basic equations for one dimensional flows, Isentropic
	relations, Normal-shock wave, Rankine-Hugoniot relations, Fanno and Rayleigh curve, Mach
	waves, Oblique shock wave, Prandtl Meyer expansion waves, Quasione dimensional flows,
	Compressible viscous flows, Compressible boundary layers
	Introduction to Computational Fluid Dynamics (CFD):
9	Boundary conditions, Basic discretization – Finite difference method, Finite volume method and
	Finite element method.

Total hours (Theory):48
Total hours (Practical):32
Total hours:80

D. Lesson Planning:

Sr. No.	Date/Week	Unit	Weight age	Topic No
1	1^{st} , 2^{nd} , 3^{rd}	Unit 1	20%	1,2
2	$4^{\text{th}}.5^{\text{th}},6^{\text{th}}$	Unit 2	20%	3,4
3	7^{th} , 8^{th} , 9^{th}	Unit 3	20%	5,6
4	$10^{ ext{th}} . 11^{ ext{th}} . 12^{ ext{th}}$	Unit 4	20%	7,8
5	13^{th} , 14^{th} , 15^{th} , 16^{th}	Unit 5	20%	9

E. Instructional Method & Pedagogy

1	At the start of course, the course delivery pattern , prerequisite of the subject will be discussed
	Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal
2	Weight age should be given to all topics while teaching and conduction of all examinations.
	Attendance is compulsory in lectures and laboratory, which may carries five marks in overall
3	evaluation.
	One/Two internal exams may be conducted and total/average/best of the same may be converted
4	toequivalent of 30 marks as a part of internal theory evaluation.
	Assignment based on course content will be given to the student for each unit/topic and will be
	evaluated at regular interval. It may carry an importance of ten marks in the overall internal
5	evaluation.
	Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the
6	overallinternal evaluation.

F. List of Practical:

1	To study the effect of angle of attack on Lift and Drag force.
2	To study the loss of energy in wake region behind various models (car, jeep, bus etc.) in the wind tunnel.
3	To draw profile of NACA Aerofoils.
4	To visualize and plot the pattern of flow around an object in a fluid stream using Hale-Shaw apparatus.
5	A case study: Performance of real nozzle.
6	To study viscous supersonic flow including compressible boundary layer and compressible turbulent mixing.

7 Measurements of boundary layer thickness using numerical & analytical solution.

G. Students Learning Outcomes:

1	The student can identify different areas of Advance Fluid Dynamics.
2	Can find the applications of all the areas in day to day life.

H. Text Books & Reference Books:

1 Batchelor G.K, An Introduction to Fluid Dynamics, Cambridge University Press, 1983. 2 Fox W. Robert, McDonald T.Alan, Introduction to Fluid Mechanics, Fourth Edition, John Wiley & Sons, 1995. 3 Frank M. White, Fluid Mechanics, Tata McGraw-Hill, Singapore, Sixth Edition, 2008. 4 Frank M. White, Viscous Fluid Flow, Third Edition, McGraw-Hill Series of Mechanical Engineering, 2006.		
 Fox W. Robert, McDonald T.Alan, Introduction to Fluid Mechanics, Fourth Edition, John Wiley & Sons, 1995. Frank M. White, Fluid Mechanics, Tata McGraw-Hill, Singapore, Sixth Edition, 2008. Frank M. White, Viscous Fluid Flow, Third Edition, McGraw-Hill Series of Mechanical Engineering, 2006. 	1	Batchelor G.K, An Introduction to Fluid Dynamics, Cambridge University Press, 1983.
 & Sons, 1995. Frank M. White, Fluid Mechanics, Tata McGraw-Hill, Singapore, Sixth Edition, 2008. Frank M. White, Viscous Fluid Flow, Third Edition, McGraw-Hill Series of Mechanical Engineering, 2006. 	2	Fox W. Robert, McDonald T.Alan, Introduction to Fluid Mechanics, Fourth Edition, John Wiley
 Frank M. White, Fluid Mechanics, Tata McGraw-Hill, Singapore, Sixth Edition, 2008. Frank M. White, Viscous Fluid Flow, Third Edition, McGraw-Hill Series of Mechanical Engineering, 2006. 		& Sons, 1995.
4 Frank M. White, Viscous Fluid Flow, Third Edition, McGraw-Hill Series of Mechanical Engineering, 2006.	3	Frank M. White, Fluid Mechanics, Tata McGraw-Hill, Singapore, Sixth Edition, 2008.
⁴ Engineering, 2006.	4	Frank M. White, Viscous Fluid Flow, Third Edition, McGraw-Hill Series of Mechanical
,,,,,		Engineering, 2006.
John D.Anderson Jr, Modern Compressible Flow with Historical Perspective, McGraw-Hill,	5	John D.Anderson Jr, Modern Compressible Flow with Historical Perspective, McGraw-Hill,
⁵ 1990.		1990.