B.E Semester: 6 Mechanical Engineering Subject Name: IOT & Smart Manufacturing (ME605-N-E) [Dept. Elect.-2]

- A. Course Objective:
- To present a problem oriented in depth knowledge of IOT & Smart Manufacturing.
- To address the underlying concepts and methods behind IOT & Smart Manufacturing.

B. Teaching / Examination Scheme:

Teaching Scheme				Evaluation Scheme						
L	Т	Р	Total	Total Credit	The	eory	Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
3	0	2	5	4	3	70	30	20	30	150

C. Detailed Syllabus:

Unit No.	Details
1	 The Internet of Things: An overview; Design Principles for Connected Devices; Internet Principles. Thinking about Prototyping – Costs versus ease of prototyping, prototyping and
	Production, open source versus Closed Source. Prototyping Embedded devices – Electronics, Embedded Computing Basics, Arduino/ Raspberry Pi/ BeagleBone Black/ etc., Electric Imp and other notable platforms
	Prototyping of Physical Design. Prototyping online Components – Getting Started with an API, Writing a New API,
2	 Real Time Reactions, Other Protocols. Techniques for Writing Embedded Code – Memory Management, Performance and Battary Life, Libraries and debugging. Automatic Storage Management in a Cloud World – Introduction to Cloud, Relational Databases in the Cloud, Automatic Storage Management in the Cloud. Smart Connected System Design Case Study
3	Internet of Things Privacy, Security and Governance Introduction, Overview of Governance, Privacy and Security Issues, Contribution from FP7 Projects, Security, Privacy and Trust in IoT-Data-Platforms for Smart Cities, First Steps Towards a Secure Platform, Smartie Approach. Data Aggregation for the IoT in Smart Cities, Security
4	Introduction to Smart Manufacturing : What is "smart manufacturing" really and how does it differ from conventional/legacy manufacturing-Smart Manufacturing Processes- Three Dimensions: (1) Demand Driven and Integrated Supply Chains;(2) Dynamically Optimized Manufacturing Enterprises (plant + enterprise operations);(3) Real Time, Sustainable Resource Management (intelligent energy demand management, production energy optimization and reduction of GHG)

5	Smart Design/Fabrication: Smart Design/Fabrication - Digital Tools, Product Representation and
	Exchange Technologies and Standards, Agile (Additive) Manufacturing Systems and Standards.
	Mass Customization, Smart Machine Tools, Robotics and Automation (perception, manipulation,
	mobility, autonomy), Smart Perception – Sensor networks and Devices.
	Smart Applications: Online Predictive Modeling, Monitoring and Intelligent Control of
6	Machining/Manufacturing and Logistics/Supply Chain Processes; Smart Energy Management of
	manufacturing processes and facilities
	Smart and Empowered Workers: Eliminating Errors and Omissions, Deskilling Operations,
	Improving Speed/Agility, Improving Information Capture/Traceability, Improving Intelligent
7	Decision Making under uncertainty Assisted/Augmented Production, Assisted/Augmented
	Assembly, Assisted/Augmented Quality, Assisted/Augmented Maintenance, Assisted/Augmented
	Warehouse Operations and Assisted Training

Total hours (Theory):48	
Total hours (Practical):32	
Total hours:80	

D. Lesson Planning:

Sr. No.	Date/Week	Unit	Weight age	Topic No
1	1^{st} , 2^{nd} , 3^{rd}	Unit 1	20%	1,2
2	$4^{\text{th}}.5^{\text{th}},6^{\text{th}}$	Unit 2	20%	3
3	7^{th} , 8^{th} , 9^{th}	Unit 3	20%	4
4	$10^{\text{th}} . 11^{\text{th}} . 12^{\text{th}}$	Unit 4	20%	5
5	13 th , 14 th ,15 th ,16 th	Unit 5	20%	6,7

E. Instructional Method & Pedagogy

1	At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
	Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal
2	Weight age should be given to all topics while teaching and conduction of all examinations.
	Attendance is compulsory in lectures and laboratory, which may carries five marks in overall
3	evaluation.
	One/Two internal exams may be conducted and total/average/best of the same may be converted to
4	equivalent of 30 marks as a part of internal theory evaluation.
	Assignment based on course content will be given to the student for each unit/topic and will be
	evaluated at regular interval. It may carry an importance of ten marks in the overall internal
5	evaluation.
	Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the
6	overall internal evaluation.

F. List of Practical:

1	Sketch the architecture of IoT Toolkit and explain each entity in brief.
2	Configuring cloud database management and accessing
3	Sensors, Gateway and Cloud interface
4	Data analysis from cloud and reporting
5	Introduction to Smart Manufacturing, distinguish its signification in comparison to conventional manufacturing.

6	To Study about tools for Smart Manufacturing.
7	To study about Smart Application.
8	To study about Smart and Empowered working.

G. Students Learning Outcomes:

1	The student can identify different areas of IOT and Smart Manufacturing.
2	Can find the applications of all the areas in day to day life.

H. Text Books & Reference Books:

1	A. McEwen and H. Cassimally, Designing the Internet of Things, 1st edition, Wiley, 2013, ISBN-10: 111843062X.
2	N. Vengurlekar and P. Bagal, Database Cloud Storage: The Essential Guide to Oracle Automatic Storage Management, 1st edition, McGraw-Hill Education, 2013, ISBN-10: 0071790152.
3	M. Kuniavsky, Smart Things: Ubiquitous Computing User Experience Design, 1st edition, Morgan Kaufmann, 2010, ISBN-10: 0123748992.