B.E Semester: 8 Mechanical Engineering Subject Name: Machine Tool Design (ME803-N-E) [Dept. Elect.-5]

A. Course Objective:

- To present a problem oriented in depth knowledge of Machine Tool Design.
- To address the underlying concepts and methods behind Machine Tool Design.

B. Teaching / Examination Scheme:

Teaching Scheme				Evaluation Scheme						
L	Т	P	Total	Total Credit	The	eory	Mid Sem Exam	CIA	Pract.	Total
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	Marks	Marks	Marks	Marks
3	0	2	5	4	3	70	30	20	30	150

C. Detailed Syllabus:

Unit No.	Details
	Introduction-Calculation Data (Forces, Velocities and Power Requirements during metal cutting):
	Turning: Cutting force, Cutting Speed and Feed Rate.
1	Drilling: Cutting forces, Cutting Speed and Feed Rate.
	Milling: Chip Section, Cutting force, Milling with Cutter Heads.
	Grinding: Grinding Forces, Cutting Speed, Feed Rate, and Depth Setting.
	Planning, Shaping and Broaching.
	General Requirements of the Machine Tool:
	Accuracy of Shape, Dimensional accuracy and surface finish of the components
	produced. High Productivity. High Technical and Economic Efficiency.
	Design Principles:
	Stiffness and Rigidity of the Separate Constructional Elements and their Combined
	behaviour Under Load, Static Rigidity, Dynamic Rigidity, Natural frequencies,
2	Damping, Mode of Vibration
2	Standardization of Spindle Speeds and Feed Rates:
	Layout of Speed Change Gears. Saw Diagrams for Arithmetic Progression, Geometric
	Progression, Harmonic Progression and Logarithmic Progression of spindle speeds for
	Mechanical Stepped Drives for Machine Tools. Establishment of Gear Ratios, Layout
	of the Intermediate Reduction Gears, Calculation of Transmission Ratios, Pulley
	Diameter, Gear Wheel Diameters and Number of Teeth. Ray Diagram. Speed
	Diagram.
	Electrical, Mechanical and Hydraulic Drives for the Operational Movements:
3	Electric Drive and Control Equipment. Mechanical and Hydraulic Drives. Drives for
-	Producing Rotational Movements, Stepped Drives, Stepless Drives. Drives for
	Producing Rectilinear Movements. Backlash Eliminator in the Feed Drive Nut.

1	Automatic Control:
	Principles and Constructional Elements. Automatic Driving of the Cutting
	Movements, Feed Movements, and Return Movements. Automatic control of
	movements for Starting, Stopping and Reversing. Automatic Clamping and
4	Unclamping the work piece. Automatic Selection of Required Speeds, Automatic
	Setting of Tools. Automatic Measurement of Machined Shape and Surfaces. Transport
	of Components from One Machine to the Next. Applications (Examples of Automatic
	Machines). Control for Moving Slides into Defined, Fixed Positions. Control of Feed
	Movements in Producing Profiles or Surface by Continuous Path Control.
	Design of Constructional Elements:
	Machine Tool Structures, Structural Elements Design for Centre Lathe, Drilling
	Machine, Knee Type Milling Machine, Planning Machine, Boring Machine, and
	Grinding Machines.
	Design of Slideways:
5	Design of Slideways for Tables, Saddles and Cross-slides. Antifriction Bearings for
	slideways. Hydrostatically Lubricated Slideways.
	Design of Spindles and Spindle Bearings:
	Design of Spindles for Strength and Stiffness. Design of Spindles for Balancing.
	General Layout and Design of the Driving Elements and the Spindle Bearings.
	Selection and General Layout of Ball and Roller Bearings for Supporting Spindles.
	Design of Secondary Drives for Machine Tools:
6	Design of Cutting Drives, Feed Drives and Setting Drives.
	Design of Control and Operating Devices for Machine Tools

Total hours (Theory):48	
Total hours (Practical):32	
Total hours:80	

D. Lesson Planning:

Sr. No.	Date/Week	Unit	Weight age	Topic No
1	1^{st} , 2^{nd} , $3^{rd}4^{th}$. 5^{th}	Unit 1	30%	1,2
2	6 th 7 th , 8 th	Unit 2	20%	3
3	9 th 10 th .11 th	Unit 3	20%	4
4	$12^{th}13^{th}$, 14^{th}	Unit 4	20%	5
5	15 th ,16 th	Unit 5	10%	6

E. Instructional Method & Pedagogy

1	At the start of course, the course delivery pattern, prerequisite of the subject will be discussed			
2	Lecture may be conducted with the aid of multi-media projector, black board, OHP etc. & equal			
2	Weight age should be given to all topics while teaching and conduction of all examinations.			
	Attendance is compulsory in lectures and laboratory, which may carries five marks in overall			
3	evaluation.			
	One/Two internal exams may be conducted and total/average/best of the same may be converted			
4	to equivalent of 30 marks as a part of internal theory evaluation.			
	Assignment based on course content will be given to the student for each unit/topic and will be			
	evaluated at regular interval. It may carry an importance of ten marks in the overall internal			
5	evaluation.			

		Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the
6	5	overall internal evaluation.
		The course includes a laboratory, where students have an opportunity to build an appreciation for
7	7	the concept being taught in lectures. Suggested list of experiment is given below

F. List of Experiments:

	1
1	To study about Machining Range Diagram.
2	To study about Interference Diagram.
3	To study about design procedures of machine tool structure.
4	To study about design selection procedures of slide ways.
5	To study about design selection procedures of ball screws.
6	To study about design selection procedures of spindle bearings.
7	To study about design selection procedures of spindle.

G. Students Learning Outcomes:

1	The student can identify different areas of Machine Tool Design .
2	Can find the applications of all the areas in day to day life.

H. Text Books & Reference Books:

1	Design Principles of Metal-Cutting Machine Tools by F. Koeningsberger.
2	Machine Tool Design by N.K.Mehta Tata McGraw Hill Publication.
3	Machine Tool Design by Acherkan, Mir Publishing.
4	Machine Tool Design by S.K.Basu, Oxford and IBH Publishing.
5	Machine Tool Design by Sen and Bhattacharya, CBS Publications.