

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Master of Engineering Semester I

(Electrical Power System)

(With effect from Academic Year 2017-18 (CBCS))

Subject Code: MEEE102-N	Subject Title: Modern Control System
Pre-requisite	

A. Course Objectives:

The educational objectives of this course are

- To understand the basic concepts of modern control theory in relation to the stability of a system.
- To co relate the concepts of control theory with the field of electrical engineering.

	Teac	hing sch	eme							
L	т	Р	Total	Total Credit	Theory		IE Marks	CIA Marks	Pract. Marks	Total Marks
Hrs	Hrs	Hrs	Hrs		Hrs	Marks	i i i i i i i i i i i i i i i i i i i	in a no	marko	
04	00	02	06	05	03	70	30	20	30	150

B. Outline of the Course:

Sr.	Title of the Unit	Minimum	
No	The of the offic	Hours	
1	Mathematical background	8	
2	State Variable Analysis	20	
3	Controllability and Observalibitly	10	
4	Models of Digital control devices and systems	12	
5	Nonlinear systems	10	

Total Hours (Theory): 60 Total Hours (Lab): 30 Total Hours: 90

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Master of Engineering Semester I

(Electrical Power System)

(With effect from Academic Year 2017-18 (CBCS))

Detailed Syllabus

Sr. No.	Торіс	Lecture Hours	Weight age(%)
1	Mathematical background : Matrices: Definition of Matrices; Matrix Algebra; Matrix Multiplication and Inversion; Rank of a Matrix; Differentiation and Integration of Matrices.	8	10%
2	State Variable Analysis: Introduction, concepts of state, state variables and state model, state-space representation for linear continuous-time systems and discrete-time systems. Time, domain solution of state equations: Solution of homogeneous state equations, state transition matrix, evaluation of matrix exponential (e ^{At}), solution of non-homogeneous state	20	30%
3	Controllability and Observalibitly: Concept of Controllability and Observability; Controllability and Observability tests for continuous time system; Controllability and Observability of discrete time system; Controllability and Observability of state model in Jordan canonical form; Loss of Controllability and Observability for sampling	10	15%
4	 Models of Digital control devices and systems Introduction to z-transform, ROC in z-transform, basic discrete time signals, time domain models of discrete time systems, transfer function models, stability on z-plane and jury stability criteria, z-domain description of sampled continuous time plants, , z-domain description of systems with dead time, Implementation of digital controllers, Tunable PID controllers, Methods of tuning industrial PI, PID controllers 		25%
5	Nonlinear systems: Introduction, common physical nonlinearities-saturation, dead-zone, relay, relay with dead zone, hysteresis, backlash, etc, jump resonance, limit cycle. Phase-plane analysis-phase plane and phase trajectory, singular points, construction of phase trajectory, evaluation of time, stability analysis.	10	20%
	Total	60	100

C. Instructional Methods

- At the start of course, the course delivery pattern , prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- Two internal exams may be conducted and average of the same may be converted to equivalent of 15 marks as a part of internal theory evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of five marks in the overall internal evaluation.
- Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concept being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

Kadi Sarva Vishwavidyalaya Faculty of Engineering & Technology

Master of Engineering Semester I (Electrical Power System) (With effect from Academic Year 2017-18 (CBCS))

- D. Student Learning outcomes:
- After completion of the course, students will be able to apply concepts of modern control theory in power system control.
- E. Text Books & Reference Books:
- 'Digital control and state variable methods', M. Gopal, TATA McGraw Hill Company
- 'Discrete time control systems', Katsushiko Ogata, Prentice Hall Publication, ©1995.
- 'Modern Control Systems', M.Gopal, TATA McGraw Hill Company
- 'Digital control systems', Benjamin C. Kuo, Oxford University Press, USA, ©1995.