

## Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Master of Engineering Semester II

(Electrical Power System)

(With effect from Academic Year 2017-18 (CBCS))

| Subject Code: MEEE203-N | Subject Title: Power System Dynamics and Control |
|-------------------------|--------------------------------------------------|
| Pre-requisite           | Power system modeling & simulation               |

#### A. Course Objective:

- To study steady state and dynamic modeling of generator.
- To study dynamic modeling of Excitation Systems, Prime movers etc.
- To study response of SMIB and multi-machine systems for different cases.

| Teaching scheme |     |     |       |                 | Evaluation Scheme |       |             |              |                 |                |
|-----------------|-----|-----|-------|-----------------|-------------------|-------|-------------|--------------|-----------------|----------------|
| L               | т   | Р   | Total | Total<br>Credit | Theory            |       | IE<br>Marks | CIA<br>Marks | Pract.<br>Marks | Total<br>Marks |
| Hrs             | Hrs | Hrs | Hrs   |                 | Hrs               | Marks |             |              |                 |                |
| 04              | 00  | 02  | 06    | 05              | 03                | 70    | 30          | 20           | 30              | 150            |

#### B. Outline of the Course:

| Sr. | Title of the Unit                    | Minimum |  |  |
|-----|--------------------------------------|---------|--|--|
| No  | The of the offic                     | Hours   |  |  |
| 1   | Modelling of Generator               | 16      |  |  |
| 2   | Modelling of Excitaion System:       | 10      |  |  |
| 3   | Dynamics of a Synchronous Generator: | 10      |  |  |
| 4   | Single machine system Modeling:      | 10      |  |  |
| 5   | Multi-machine System:                | 14      |  |  |

**Total Hours (Theory): 60** 

**Total Hours: 60** 



## Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Master of Engineering Semester II

(Electrical Power System)

(With effect from Academic Year 2017-18 (CBCS))

#### **Detailed Syllabus**

| Sr. | Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lecture | Weight |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| 1   | Modelling of Generator:<br>Classical Machine Description, Voltage Generation, Open-Circuit Voltage, Armature Reaction,<br>Terminal Voltage, Power Delivered by Generator, Synchronizing Generator to an Infinite Bus,<br>Synchronous Condenser, Role of Synchronous Machine Excitation in Controlling Reactive<br>Power, The Park Transformation, Park's Voltage Equation, Park's Mechanical Equation, Circuit<br>Model, Instantaneous Power Output, Applications, Synchronous Operation, Steady-state Model,<br>Simplified Dynamic Model, Generator Connected to Infinite Bus | 16      | 30     |
| 2   | Modelling of Excitaion System:<br>Excitation System, Excitation System Modeling, Excitation System – Standard Block Diagram,<br>System Representation by State Equation, Prime Mover Control System.                                                                                                                                                                                                                                                                                                                                                                           | 10      | 10     |
| 3   | <b>Dynamics of a Synchronous Generator</b> :<br>System Model, Synchronous Machine Model, Application of Model, Calculation of Initial<br>Conditions, System Simulation, Consideration of Other Machine Model, Inclusion of SVC<br>Model.                                                                                                                                                                                                                                                                                                                                       | 10      | 20     |
| 4   | Single machine system Modeling:<br>Small Signal Analysis with Block Diagram Representation, Characteristic Equation (CE) and<br>Application of Routh-Hurwithz Criteion, Synchronizing and Damping Torque Analysis, Small<br>Signal Model : State Equation, Nonlinear Oscillations – Hopf Bifurcation.                                                                                                                                                                                                                                                                          | 10      | 20     |
| 5   | Multi-machine System:<br>Simplified system Model, Detailed models:<br>Case I, Detailed models:<br>Case II, Inclusion of Load and SVC dynamics, Modal Analysis of Large Power Systems, Case<br>Studies.                                                                                                                                                                                                                                                                                                                                                                         | 14      | 20     |
|     | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60      | 100    |

#### C. Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern , prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lectures, which may carries five marks in overall evaluation.
- One internal exam of 30 marks is conducted as a part of mid semester evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carries a weight age of five marks in the overall internal evaluation.



# Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Master of Engineering Semester II

#### (Electrical Power System)

(With effect from Academic Year 2017-18 (CBCS))

• Surprise tests/Quizzes/Seminar /Tutorial may be conducted and having share of five marks in the overall internal evaluation.

### D. Learning Outcome

On successful completion of the course

• The student can identify problems related to multi-machine system and modeling of components of power system. Student should be able to implement different modeling techniques through simulation in power system.

#### E. Text Books & Reference Books:

- Power Systems Analysis By Vijay Vittal, Bergen, Pearson Education
- Power System Dynamics By K R Padiyar, B S Publications
- Power System Stability & Control, By- P.Kundur, TataMcgraw hill
- P.Sauer & M.A. Pai, 'Power System Dynamic & Stability, Prentice Hall Publication.
- www.ee.iitb.ac.in/~peps/downloads.html