

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Master of Engineering Semester II

(Electrical Power System)

(With effect from Academic Year 2017-18 (CBCS))

Subject Code: MEEE204-N	Subject Title: Advanced Power Electronics
Pre-requisite	

A. Course Objective:

- To present a problem oriented introductory knowledge of advanced power electronics.
- To focus on the study of electrical parameters & different engineering application based principles.
- To address the underlying concepts & methods of power electronics.

	Teac	hing sch	ieme		Evaluation Scheme					
L	т	Р	Total	Total Credit	Theory		IE Marks	CIA Marks	Pract. Marks	Total Marks
Hrs	Hrs	Hrs	Hrs		Hrs	Marks				
04	00	02	06	05	03	70	30	20	30	150

B. Outline of the Course:

Sr.	Title of the Unit	Minimum Hours		
No	The of the offic			
1	Introduction:	6		
2	AC-DC converter:	16		
3	DC-AC converters:	16		
4	Multilevel inverters:	12		
5	Advance Electrical Drives:	10		

Total Hours (Theory): 60 Total Hours (Lab): 30 Total Hours: 90

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Master of Engineering Semester II

(Electrical Power System)

(With effect from Academic Year 2017-18 (CBCS))

Detailed Syllabus

Sr.	Торіс	Lecture	Weight
	Introduction:	nours	uge(///
1	Review of power semiconductor devices: Thyristor, IGBT, MOSFET, IGCT, GTO and, role of SiC in power semiconductor technology	6	10
2	AC-DC converter:		
	Uncontrolled rectifier, semi-controlled rectifiers, fully controlled rectifiers with R, RL and RLE load, effect of source inductance on performance of converter, firing schemes and circuits,		
	MULTIPULSE CONVERTERS: Multi-pulse converters: 12,18 pulse converters, phase shifting transformers	16	25
	POWER FACTOR: power factor improvement techniques,		
	PWM rectifiers: equal area PWM, sine PWM, Single Phase and Three phase boost rectifier circuits		
3	DC-AC converters:		
	Voltage Source Inverter: 120° and 180° conduction modes,		
	PWM techniques of voltage fed converters: Selective Harmonic Elimination (SHE), sine modulation, Third harmonic injection, Hysteresis Current Control, Sigma-Delta Modulation, Space Vector Pulse Width Modulation: under modulation and over modulation and their implementation	16	25
	Current Source Inverter: Current Source inverters and their role in high power drives,		
4	Multilevel inverters:		
	Diode Clamped MLI, Flying Capacitor MLI, Cascaded H-Bridge topology: operation with equal and unequal DC voltages,		
	Carrier modulation schemes of multilevel inverter, SVPWM of Multilevel inverter, Neutral Point Balancing schemes	12	20
5	Advance Electrical Drives:		
	Brushless DC motor:	10	20
	Sinusoidal and Trapezoidal BLDC motor, Electronic Commutator, Torque production in BLDC motor, Control of Brushless DC drives		-
	Total	60	100

Kadi Sarva Vishwavidyalaya

Faculty of Engineering & Technology

Master of Engineering Semester II

(Electrical Power System)

(With effect from Academic Year 2017-18 (CBCS))

C. Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern , prerequisite of the subject will be discussed
- Lecture may be conducted with the aid of multi-media projector, black board, OHP etc.
- Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- One internal exam of 30 marks is conducted as a part of mid semester evaluation.
- Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carries a weight age of five marks in the overall internal evaluation.
- Surprise tests/Quizzes/Seminar /Tutorial may be conducted and having share of five marks in the overall internal evaluation.
- The course includes a laboratory, where students have an opportunity to build an appreciation for the concept being taught in lectures.
- Experiments shall be performed in the laboratory related to course contents.

D. Learning Outcome

On successful completion of the course

- The student can be acquired the basic knowledge of electric circuits, electrical fundamentals, thus being prepared to pursue any area of engineering spectrum in depth as desired.
- The students will be able to effectively employ electrical systems and lead the exploration of new applications and techniques for their use.

E. Text Books & Reference Books:

- Rashid, M. H., 'Power Electronics Circuits, Devices, and Applications', Prentice-
- Hall of India Pvt. Ltd., New Delhi, 2nd edition, 1999
- Dubey G.K., '*Power Semiconductor Controlled Drives*', Prentice-Hall, Eaglewood Cliffs, New Jersey, 2002
- Ned Mohan, Tore M. Undeland and William P. Robbins, 'Power Electronics Converters, Applications, and Design', John Willey & Sons, Inc., 2ndEdition, 1999
- Bin Wu, 'High power converters and ac drives', Wiley-IEEE Press, 2002
- Sen P.C., 'Thyristor DC drives' John wiley and sons, New York, 1981
- B.K. Bose, 'Modern Power Electronics and AC drives', Prentice-Hall of India Pvt. Ltd., New Delhi